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1. Introduction

When an explosive detonates, the rapid expansion of reaction gases generates a shock wave that
propagates into the surrounding medium (assumed in this note to be air). The pressure history at
a given spatial location generally consists of an early positive (compressive) phase followed by a
negative phase. This negative phase results from the inertial effects of air. The air takes time to
accelerate when the shock wave arrives, and once the shock wave passes, the air shifts back
toward the comparatively still air behind it, resulting in the negative-pressure phase relative to
ambient conditions (1).

This technical note documents a series of air blast calculations aimed at determining the pressure
histories at various gauge locations away from a spherical explosive charge suspended in air.
Four different explosives are considered: trinitrotoluene (TNT), composition C-4 (C4), a
polymer-bonded explosive (PBXN-109), and nitromethane (NM). Each charge diameter (CD) is
assumed to be 17.46 cm (equivalent to a 10-lb charge for the TNT case). All calculations are
completed using the Sandia hydrocode CTH (2), with model parameters provided in the code’s
material library. A Jones-Wilkins-Lee (JWL) equation of state is used for each explosive
considered, and a Sesame tabular equation of state is used to model the air behavior. A
comparison of the results obtained using CTH is made to ones generated using the Friedlander
approximation (3).

Some of the explosives investigated herein exhibit nonideal behavior (e.g., PBXN-109). The
JWL model used to predict the expansion of the reactant products does not necessarily capture
this nonideal behavior (e.g., the JWL model cannot generally account for the energy added to the
shock due to late-time burning of the aluminum particles in PBXN-109). Since all of the features
of reaction for these materials are not accounted for in the JWL model, the reader should be
cautious about directly using the results—especially in regions where the inherent assumptions
break down.

Because one of the main objectives of this note is to compare the CTH calculations to the
Friedlander approximation, the explosive behavior is described using programmed burn with a
JWL model governing the product expansion. This reaction model is chosen both because it is
the most commonly used model in the hydrocodes to describe explosive behavior and because it
is one of the simpler models available. The rationale behind using programmed burn along with
the JWL model to describe the explosive behavior is that if the Friedlander approximation cannot
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match the results from even one of the simpler reaction models, there is little hope that it will be
able to handle more complex situations (such as late-time burning of metallic particles).
Ultimately, when using the Friedlander equation (or any other model), the analyst should be
aware of the underlying assumptions inherent in the model equations.

2. Results

All calculations presented in this report assumed a spherical explosive charge, with a CD equal to
17.46 cm, suspended in air and detonated at the center. Because of the spherical symmetry of the
problem, all the CTH analyses were 1-D spherical calculations. A JWL equation of state was
assumed for each of the four explosives investigated (TNT, C4, PBXN-109, and NM) and the
CTH material library parameters were used for each. Air was modeled using the Sesame tabular
equation of state available in the CTH material library. A converged solution was obtained by
using one computational cell per millimeter. Pressure time histories were taken at 5, 10, 20, and
60 CDs (i.e., at 87.3, 174.6, 349.2, and 1047.6 cm, measured from the center of the spherical
charge).

Figures 1–4 depict at 5, 10, 20, and 60 CDs, respectively, the initial shock wave for each of the
four explosives investigated. The profiles of the four explosives are seen to be qualitatively
similar, with PBXN-109 and C4 generating the largest overpressures at each gauge location,
followed by TNT and NM with somewhat lower pressures (see table 1). The overpressure drops
off substantially by 20 CDs (note that the ambient pressure is 100 kPa such that overpressure is
measured relative to this pressure). The extent of the initial signal’s negative phase is tabulated in
table 2 for the four different explosives investigated at the four different gauge locations.

Table 1. Peak overpressure (in kilopascal).

Gauge Distance TNT C4 PBXN-109 NM

5 CD 3178 3972 4031 2694

10 CD 762 924 985 600

20 CD 140 161 170 113

60 CD 20 22 22 17

The curves in figure 1, which were captured from gauges located at 5 CDs from the explosive,
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Figure 1. Pressure gauge time histories for various explosive charges at 5
CDs.
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Figure 2. Pressure gauge time histories for various explosive charges at 10
CDs.
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Figure 3. Pressure gauge time histories for various explosive charges at 20
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Figure 4. Pressure gauge time histories for various explosive charges at 60
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Table 2. Maximum difference from ambient pressure (in kilopascal) in the negative-pressure phase.

Gauge Distance TNT C4 PBXN-109 NM

5 CD -99 -99 -98 -98

10 CD -35 -30 -28 -33

20 CD -21 -21 -21 -19

60 CD -6 -6 -6 -6

display some different behavior when compared to the time histories captured further away from
the charges. To understand the pressure time histories at this gauge nearest to the explosive, the
pressure time histories of all gauges in the C4 case during the first 30 ms are shown in figure 5 as
a log-log plot. The time histories at 5 CDs are characterized by 1) an early peak (around 0.25 ms
in figure 5), which is due to the initial shock from the detonation; 2) an inflection point (around
0.31 ms), which is due to the interface between the highly compressed shell of air behind the
initial shock and in front of the explosive products; and 3) a steep pressure drop (around 0.35 ms),
which is due to a developing, inward-moving shock being dragged along with the detonation
products (i.e., the products containing this developing shock are initially moving faster away from
the center than the shock is moving toward it). The secondary shock eventually gets through the
fast-moving detonation products (seen as a shock around 1.3 ms), reflects off the center of the
spherically detonated charge, and is seen at later times and gauges further out as a weaker shock
behind the primary one (e.g., this reflected shock is seen around 3.3 ms at the 5 CD gauge in
figure 5). For further discussion of this phenomena near the charge, the reader is referred to
discussions in (4).

A Friedlander waveform is often used to describe the blast overpressure once the blast wave has
fully developed (i.e., at some distance away from the detonated charge). This waveform assumes
that there are no nearby surfaces for the blast wave to reflect off of, which is an appropriate
assumption for the calculations performed in this current work. The Friedlander waveform is
given as follows:

P (t) = Pse
−t
t∗

(
1− t

t∗

)
, (1)

where Ps is the peak overpressure and t∗ is the time it takes for the overpressure to reach ambient
pressure. Figures 6–13 contain a comparison of the results obtained from the CTH calculations
and those obtained using the Friedlander equation (equation [1]). The figures are broken up for
clarity, with figures 6–9 containing the plots for C4 and TNT, while figures 10–13 contain the
plots for PBXN-109 and NM. Figures 6, 7, 10, and 11 show that the Friedlander waveform
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provides a poor approximation close to the detonated charge; however, the Friedlander equation
gives reasonable results at 20 CDs and greater away from the explosive charge (see figures 8, 9,
12, and 13).

That the Friedlander equation (equation [1]) results in a poor approximation to the pressures seen
at 5 CDs (i.e., figures 6 and 10) is not terribly surprising; the Friedlander equation is meant for
tracking developed shocks through air, while the gauges at this point are still inside the explosive
fireball (where the pressure time histories are dramatically influenced by the propagating interface
between the explosive products and air as well as the inward-moving shock generated by the
over-expanded gases). The gauges at 10 CDs appear to be outside of the explosive fireball (since
no evidence of an air-product interface is detected in any of the pressure time histories at this
point); however, the lack of agreement between the Friedlander equation and the CTH results is
still understandable since the Friedlander equation is inaccurate for overpressures much above 1
atm, or roughly 100 kPa, and a modified Friedlander equation is often used instead (3).

The curves shown in figures 14–17 illustrate the impulse per unit area (i.e., the integral of the
pressure time histories) calculated from the pressure data for each explosive at each of the four
gauges. The qualitative behavior of the impulses is similar for the four different explosives, with
PBXN-109 resulting in the highest impulses and NM yielding the lowest. The impulse obtained
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using the Friedlander approximation of equation 1 is also shown for comparison with the CTH
results. Once again, the Friedlander approximation gives a reasonable agreement with the CTH
results (comparing up to the peak impulse) between 20 and 60 CDs but gives less than ideal
agreement closer to the explosive charge.
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Figure 8. Pressure gauge time histories with the corresponding fit to the
Friedlander waveform at 20 CDs for C4 and TNT.
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Friedlander waveform at 5 CDs, for PBXN-109 and NM.
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Figure 11. Pressure gauge time histories with the corresponding fit to the
Friedlander waveform at 10 CDs for PBXN-109 and NM.
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Figure 12. Pressure gauge time histories with the corresponding fit to the
Friedlander waveform at 20 CDs for PBXN-109 and NM.
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Figure 13. Pressure gauge time histories with the corresponding fit to the
Friedlander waveform at 60 CDs for PBXN-109 and NM.
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Figure 14. TNT impulse time histories at the four gauge locations along
with the Friedlander approximations.
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Figure 15. C4 impulse time histories at the four gauge locations along with
the Friedlander approximations.
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Figure 16. PBXN-109 impulse time histories at the four gauge locations
along with the Friedlander approximations.
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Figure 17. NM impulse time histories at the four gauge locations along with
the Friedlander approximations.

3. Summary

In conclusion, four different calculations of spherical explosive charges (TNT, C4, PBXN-109,
and NM) were performed using the CTH hydrocode to investigate the pressure time histories at
four different gauge locations (5, 10, 20, and 60 CDs). The overpressure was observed to depend
both on the explosive used and, especially, on the distance from the explosive charge. Using a
Friedlander approximation provided reasonable agreement for pressure decay and integrated
impulse at 20 CDs and beyond regardless of the explosive type (ideal or nonideal). In the
near-field (5 CDs) and mid-field (10 CDs) regions, the Friedlander approximations were not very
accurate; however, the deviation from the CTH results was similar across ideal and nonideal
explosive types.
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